View Featured Offers >>
28692
5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb
Primary Antibodies
Monoclonal Antibody
R
Recombinant

5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb #28692

Citations (41)
Confocal immunofluorescent analysis of 293T cells transfected with a construct expressing DYKDDDDK-tagged TET1 catalytic domain (TET1-CD) using 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb (green) and DYKDDDDK Tag (9A3) Mouse mAb #8146 (red). Blue pseudocolor = DRAQ5® #4084 (fluorescent DNA dye). As expected, 293T cells expressing TET1-CD (red) exhibit decreased levels of 5-methylcytosine (green).
DNA fragments from HCT 116 wild type (WT) and DNMT1/DNMT3B knock-out (KO) cells were blotted onto a nylon membrane, UV cross-linked, and probed with 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb. The top panel shows the antibody detecting more methylated cytosine in the wild type cells, while the bottom panel shows the membrane stained with methylene blue.
The specificity of 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb was determined by dot blot. The same sequence of a 387 base pair DNA fragment was generated by PCR using exclusively unmodified cytosine, 5-methylcytosine (5-mC), 5-hydroxymethylcytosine (5-hmC), 5-carboxylcytosine (5-caC), or 5-formylcytosine (5-fC). The respective DNA fragments were blotted onto a nylon membrane, UV cross-linked, and probed with 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb. The top panel shows the antibody only binding to the DNA fragment containing 5-mC, while the bottom panel shows the membrane stained with methylene blue.
DNA immunoprecipitations were performed with 1 μg of genomic DNA from NCCIT cells and either 10 μl of 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb #28692 or 10 μl of Rabbit (DA1E) mAb IgG XP® Isotype Control (DIP Formulated). The enriched DNA was quantified by real-time PCR using human Aqp2 intron 5 primers, human TIMP3 promoter primers, SimpleDIP Human Testis-Specific H2B Promoter Primers, and SimpleChIP® Human GAPDH Exon 1 Primers #5516. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input DNA, which is equivalent to one.
DNA immunoprecipitations were performed with 1 μg of genomic DNA from mouse embryonic stem cells and either 10 μl of 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb #28692 or 10 μl of Rabbit (DA1E) mAb IgG XP® Isotype Control (DIP Formulated). The enriched DNA was quantified by real-time PCR using mouse Aqp2 exon 1 primers, SimpleDIP Mouse Intracisternal-A Particle (IAP) LTR Primers, mouse Lamc3 exon 1 primers, and SimpleChIP® Mouse GAPDH Intron 2 Primers #8986. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input DNA, which is equivalent to one.
The specificity of 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb was determined by ELISA. The antibody was titrated against a single-stranded DNA oligo containing either unmodified cytosine or differentially modified cytosine (5-mC, 5-hmC, 5-caC, 5-fC). As shown in the graph, the antibody only binds to the oligo containing 5-mC.
The specificity of 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb was determined by DNA immunoprecipitations. DNA IPs were performed with genomic DNA prepared from mouse embryonic stem cells, spiked with control DNA containing either unmethylated cytosine, 5-methylcytosine (5-mC), or 5-hydroxymethylcytosine (5-hmc). IPs were performed using 5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb. The enriched DNA was quantified by real-time PCR using primers specific to the spiked-in control DNA sequence. The amount of immunoprecipitated DNA in each sample is represented as signal relative to the total amount of input DNA, which is equivalent to one.

Product Usage Information

Application Dilution
Immunofluorescence (Immunocytochemistry) 1:1600
DNA Dot Blot 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Specificity / Sensitivity

5-Methylcytosine (5-mC) (D3S2Z) Rabbit mAb recognizes endogenous levels of 5-methylcytosine. This antibody has been validated using ELISA, dot blot, and MeDIP assays and shows high specificity for 5-methylcytosine.

Species Reactivity:

All Species Expected

Source / Purification

Monoclonal antibody is produced by immunizing animals with 5-methylcytidine.

Background

Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7).
Normally DNA methylation occurs in a bimodal fashion, such that CpG dinucleotides are largely methylated across the genome, except in short stretches of CpG-rich sequences associated with gene promoters, known as CpG-islands, where methylation is virtually absent (8). Cancer cell genomes often undergo global hypomethylation, while CpG-islands become hypermethylated, causing their associated promoters to become repressed (9). There is evidence that a number of aberrantly hypermethylated CpG-islands found in carcinomas occur at tumor suppressor genes such as RB1, MLH1, and BRCA1 (10).

Limited Uses

Except as otherwise expressly agreed in a writing signed by a legally authorized representative of CST, the following terms apply to Products provided by CST, its affiliates or its distributors. Any Customer's terms and conditions that are in addition to, or different from, those contained herein, unless separately accepted in writing by a legally authorized representative of CST, are rejected and are of no force or effect.

Products are labeled with For Research Use Only or a similar labeling statement and have not been approved, cleared, or licensed by the FDA or other regulatory foreign or domestic entity, for any purpose. Customer shall not use any Product for any diagnostic or therapeutic purpose, or otherwise in any manner that conflicts with its labeling statement. Products sold or licensed by CST are provided for Customer as the end-user and solely for research and development uses. Any use of Product for diagnostic, prophylactic or therapeutic purposes, or any purchase of Product for resale (alone or as a component) or other commercial purpose, requires a separate license from CST. Customer shall (a) not sell, license, loan, donate or otherwise transfer or make available any Product to any third party, whether alone or in combination with other materials, or use the Products to manufacture any commercial products, (b) not copy, modify, reverse engineer, decompile, disassemble or otherwise attempt to discover the underlying structure or technology of the Products, or use the Products for the purpose of developing any products or services that would compete with CST products or services, (c) not alter or remove from the Products any trademarks, trade names, logos, patent or copyright notices or markings, (d) use the Products solely in accordance with CST Product Terms of Sale and any applicable documentation, and (e) comply with any license, terms of service or similar agreement with respect to any third party products or services used by Customer in connection with the Products.

For Research Use Only. Not for Use in Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
SimpleChIP is a registered trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.
To Purchase # 28692
Cat. # Size Qty. Price
28692S
100 µl